Cherreads

Chapter 24 - this is important

Here are approximate central coordinates (latitude and longitude) for the 7 major tectonic plates based on their general locations described:

1. **Pacific Plate**

- Centered roughly in the middle of the Pacific Ocean

- Approximate coordinates: \(0^\circ \text{N}, -160^\circ \text{W}\)

2. **North American Plate**

- Covers North America and part of the Atlantic Ocean

- Approximate coordinates: \(45^\circ \text{N}, -100^\circ \text{W}\)

3. **Eurasian Plate**

- Covers most of Europe and Asia

- Approximate coordinates: \(50^\circ \text{N}, 60^\circ \text{E}\)

4. **African Plate**

- Covers Africa and surrounding Atlantic Ocean

- Approximate coordinates: \(0^\circ \text{N}, 20^\circ \text{E}\)

5. **Antarctic Plate**

- Covers Antarctica and surrounding oceanic crust

- Approximate coordinates: \(90^\circ \text{S}, 0^\circ\)

6. **Indo-Australian Plate**

- Covers Australia, India, and Indian Ocean

- Approximate coordinates: \(20^\circ \text{S}, 100^\circ \text{E}\)

7. **South American Plate**

- Covers South America and part of the Atlantic Ocean

- Approximate coordinates: \(10^\circ \text{S}, -60^\circ \text{W}\)

If you want more precise boundary coordinates or specific points along the plate boundaries, please let me know!

African PlateCovers Africa and surrounding Atlantic OceanApproximate coordinates: 0^\circ \text{N}, 20^\circ \text{E}NE

Pacific PlateCentered roughly in the middle of the Pacific OceanApproximate coordinates: 0^\circ \text{N}, -160^\circ \text{W}NW

@=turning pt

rth American PlateCovers North America and part of the Atlantic OceanApproximate coordinates: 45^\circ \text{N}, -100^\circ \text{W}

3Eurasian PlateCovers most of Europe and AsiaApproximate coordinates: 50^\circ \text{N}, 60^\circ \text{E}

4African PlateCovers Africa and surrounding Atlantic OceanApproximate coordinates: 0^\circ \text{N}, 20^\circ \text{E}

1. Pacific Plate: \(0^\circ \text{N}, -160^\circ \text{W}\) → (0, -160)

2. North American Plate: \(45^\circ \text{N}, -100^\circ \text{W}\) → (45, -100)

3. Eurasian Plate: \(50^\circ \text{N}, 60^\circ \text{E}\) → (50, 60)

4. African Plate: \(0^\circ \text{N}, 20^\circ \text{E}\) → (0, 20)

5. Antarctic Plate: \(90^\circ \text{S}, 0^\circ\) → (-90, 0)

6. Indo-Australian Plate: \(20^\circ \text{S}, 100^\circ \text{E}\) → (-20, 100)

7. South American Plate: \(10^\circ \text{S}, -60^\circ \text{W}\) → (-10, -60)

Sum latitudes:

\(0 + 45 + 50 + 0 - 90 - 20 - 10 = -25\)

Sum longitudes:

\(-160 - 100 + 60 + 20 + 0 + 100 - 60 = -140\)

Final combined coordinate: \((-25^\circ, -140^\circ)\)

Money out 💰 put I

The combined coordinate \((-25^\circ, -140^\circ)\) corresponds to a location in the South Pacific Ocean, roughly southeast of the Pitcairn Islands. It is a valid geographic point on its own, not directly on any major landmass.

1. Negative longitudes:

\(-160 + (-100) + (-60) = -320\)

2. Positive longitudes:

\(60 + 20 + 0 + 100 = 180\

Here are the corners grouped in pairs:

1. (-160, -100)

2. (60, 20)

3. (0, 100)

4. (-60)

Since there is an odd number of corners, the last group has only one corner.

1. Add #1 (Pacific Plate) and #7 (South American Plate):

\[

(0, -160) + (-10, -60) = (0 + (-10), -160 + (-60)) = (-10, -220)

\]

2. Add #2 (North American Plate) and #6 (Indo-Australian Plate):

\[

(45, -100) + (-20, 100) = (45 + (-20), -100 + 100) = (25, 0)

\]

3. Add #3 (Eurasian Plate) and #5 (Antarctic Plate):

\[

(50, 60) + (-90, 0) = (50 + (-90), 60 + 0) = (-40, 60)

\]

4. Leave #4 (African Plate) as is:

\[

(0, 20)

\]

Final results:

1+7: \((-10, -220)\)

2+6: \((25, 0)\)

3+5: \((-40, 60)\)

4: \((0, 20)\)

And I just proved I'm the god of war and l UV

Let's check if we can get 365 using the numbers from the results:

Numbers:

-10, -220, 25, 0, -40, 60, 0, 20

Try some combinations:

1. \(25 \times 10 = 250\) (need 115 more)

2. \(60 \times 6 = 360\) (need 5 more)

3. \(20 \times 18 = 360\) (need 5 more)

4. \(60 + 25 = 85\)

5. \(85 \times 4 = 340\) (need 25 more)

6. \(340 + 25 = 365\)

So, using \( (60 + 25) \times 4 + 25 = 365 \).

Using numbers from the sums:

- 60 (from 3+5)

- 25 (from 2+6)

Therefore, yes, you can get 365 by:

\[

(60 + 25) \times 4 + 25 = 365

\]

If you want, I can try other combinations too!

1. Original coordinates:

(0, -160), (45, -100), (50, 60), (0, 20), (-90, 0), (-20, 100), (-10, -60)

2. Sum all X coordinates:

\(0 + 45 + 50 + 0 + (-90) + (-20) + (-10) = -25\)

3. Sum all Y coordinates:

\(-160 + (-100) + 60 + 20 + 0 + 100 + (-60) = -140\)

4. Divide the total sums by 2 to get two equal locations:

X sum per location: \(-25 / 2 = -12.5\)

Y sum per location: \(-140 / 2 = -70\)

5. Two equal locations:

\((-12.5, -70)\) and \((-12.5, -70)\)

1. Coordinates: (-12.5, -70)

2. Latitude: -12.5 (South of the Equator)

3. Longitude: -70 (West of the Prime Meridian)

4. This location falls in the western part of South America, specifically in the Amazon rainforest region of Peru.

More Chapters